
miniconda-introduction.md

References

 Miniconda
30 min test drive

Description

The Miniconda installer installs a smaller version of the conda package manager to your home directory as
will as well as it's own version of Python. Once Miniconda is installed, you can use the conda command to
create additional Python environments which you can customize as you like. You can create additional
environments that run "any" version of Python and any other Python programs you install to the virtual
environments.

Benefits

You can easily create, modify, activate and deactivate mulitiple custom Python environments.
You can create and run virtual Python environments using almost "any" version of Python.
Each Python environement can be customized as you wish.

Keep in mind

It is easy to accidentally customize the Python environment that the miniconda installer installs for you and
you probably do not want to do this.

Create a new, hosted, Python (virtual) environment for each of your project(s). This way your host Python
installation, the one that supports the conda program, remains 'clean'. This allows you to freely experiment
and easily discard or duplicate and or exchange virtual environement contained Python projects without
disturbing host Python version.

Requirements

sudo access

Users need sudo access to:

apt-get update or apt update
apt-get install or apt install

Options

The checksums comparison in this document makes use of html2text

af://n3
af://n4
http://conda.pydata.org/docs/test-drive.html
af://n12
af://n15
af://n26
af://n31
af://n32
af://n42

Install miniconda

Is miniconda alr eady installed?

Target Workstation

Download and verify

Latest

Make executable

checksums

Download

Convert to text

Compare

Compare to checksum file entry:

Installation

sudo apt update

sudo apt install html2text

conda --version

mkdir -p ~/sw/ubuntu/16.04/miniconda

cd ~/sw/ubuntu/16.04/miniconda

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh

chmod +x Miniconda3-latest-Linux-x86_64.sh

wget https://repo.continuum.io/miniconda/ -O checksums.html

html2text -width 500 checksums.html > md5sums

md5sum Miniconda3-latest-Linux-x86_64.sh | awk '{ print $1 }'

cat md5sums | grep Miniconda3-latest-Linux-x86_64.sh | awk '{ print $5 }'

af://n46
af://n47
af://n49
af://n51
af://n52
af://n57
af://n58
af://n60
af://n62
af://n68

Add Miniconda3 to your path (~/.bashr c or ~/.profile)

To add to your path:

Content example:

Confirmation

Start a new terminal session or run source ~/.bashrc

Version check

List current conda stuff

Update conda

IMPORTANT: Host vs. Client Virtual Envir onments

OK, so you just installed miniconda and created a host virtual environment. It is important to keep in mind
that this host virtual environment is going to be used to create client virtual environments. You want to
always create and activate a client virtual environment before you install anything else or you are likely
end up with with a broken host virtual environment. Using a pristine host environment will allow you to
create many, many client virtual environments, each with it's own version of Python or R and each with it's
own packages isolated from the host virtual environment and the system's default Python environment.

Create and activate a virtual p ython environment

Use the conda create command, followed by any name you wish to call it. Here we create two virtual
environments:

bash Miniconda3-latest-Linux-x86_64.sh -b

cat ~/.bashrc | grep miniconda

nano ~/.bashrc

set PATH to include Miniconda3's bin directory

PATH="$HOME/Miniconda3/bin: $PATH"

conda --version

conda list

conda update -y conda

af://n71
af://n80
af://n83
af://n85
af://n87
af://n89
af://n92

output example from the first command:

Activate the envir onment

If you run which python before activating your new Python environment you will see that the host Python
environment that ships with miniconda is the active Python at the moment:

Output example:

Activate one of your new Python environment:

Notice your prompt

When you activate a conda created Python environement the name you gave the environment prepended to
your command prompt. In this example you will see that the prompt now begins with (deep) telling us that
the custom python 2 environment we created earlier called deep is now the active Python for our user.

Running which python again will show you that the Python for the deep virtual environment is the active
Python:

Install some stuff

Once you have activated your client virtual environment anything you install using Anaconda cloud or using
the pip command will be installed into that environment.

conda create --name deep python=2

conda create --name rminc python=2

#

To activate this environment, use:

> source activate deep

#

To deactivate this environment, use:

> source deactivate deep

#

which python

/home/users/mary/Miniconda3/bin/python

source activate deep

(deep) suser@ace-ws-30:~/sys/sw/linux/miniconda $

~/Miniconda3/envs/deep/bin/python

af://n96
af://n98
af://n108
af://n115

Now we are going to install our pip packages to our custom virtual python environment. Notice that we do
not need to use sudo or the root user as this installation takes place in a virtual environment that is in our
home directory.

Deep project learning example:

pip install numpy matplotlib tensorflow

End of output example:

Lets go ahead and upgrade pip in our virtual environment:

Create another custom Python envir onment

This time we will create a virtual environment called data running Python 3.

conda create --name data python=3

IMPORTANT: Even though we have created a new virtual environment, the previous virtual environment
called deep is still the active virtual environment. If you install anything Pythonic now it would be installed to
the deep Python environment and not the data virtual environment you just created. You will want to
deactivate deep and then activate data before you can install to your Python 3 environment:

you will notice that the (deep) command prompt prefix is no longer visible. This means that the Miniconda
host virtual environment is the active virtual environment right now. We want to keep it pristine so we will
activate our new Python 3 environment called data before continuing:

Now you are ready to install to the deep Python 3 environment. Note that you can switch environments
without deactivating as activating a new environment automatically deactivates the currently active
environment. In other words we could have just run source activate data .

Confirm that your prompt prefix is now data and install your stuff:

...

Successfully installed absl-py-0.1.12 astor-0.6.2 backports.functools-lru-cache-1.5

backports.weakref-1.0.post1 bleach-1.5.0 cycler-0.10.0 enum34-1.1.6 funcsigs-1.0.2

futures-3.2.0 gast-0.2.0 grpcio-1.10.0 html5lib-0.9999999 kiwisolver-1.0.1 markdown-

2.6.11 matplotlib-2.2.2 mock-2.0.0 numpy-1.14.2 pbr-3.1.1 protobuf-3.5.2.post1

pyparsing-2.2.0 python-dateutil-2.7.2 pytz-2018.3 six-1.11.0 subprocess32-3.2.7

tensorboard-1.6.0 tensorflow-1.6.0 termcolor-1.1.0 werkzeug-0.14.1

You are using pip version 9.0.1, however version 9.0.3 is available.

You should consider upgrading via the 'pip install --upgrade pip' command.

pip install --upgrade pip

source deactivate deep

source activate data

af://n129

pip install ipython notebook

and upgrade pip in your data virtual environment

Which pythons are available

You set up Python environments with (almost?) any version of Python available. Have a look:

conda search python

That's a who lotta Pythons...

List your curr ent conda envir onments:

conda info --envs

output example:

Hint:

Notice the environment named base or root in some cases. Again, this is the host Python environment
which hosts the conda command. You will probably don't want to install to your root Python so ensure that
you make one of your custom Pythons is active before installing programs using pip or the Anaconda
cloud.

Anaconda cloud example

Update your host envir onment

First we will update our conda host environment

Create a new virtual envir onment client

Here we create a python environment using an Ansible conda package from Anaconda Cloud using the
following values:

pip install --upgrade pip

conda environments:

#

data * /home/vagrant/Miniconda3/envs/data

deep /home/vagrant/Miniconda3/envs/deep

root /home/vagrant/Miniconda3

source deactivate deep

conda update conda

af://n149
af://n155
af://n157
af://n163
af://n164
af://n168

Create our a new client environment called ansible-2.0.0.2:

(You can easily delete this new environment once you are finished with it.)

Activate the ne w environment

Notice that your command prompt has changed telling you which virtual environment you are in. When you
are finished using an virtual environment, deactivate as follows, but do not deactivated it just yet as we
are going to install an Anaconda Cloud package into it next:

Make sure the environment is the active one. Look for the environments name (ansible-2.0.0.2)
command prompt preface and then install your Anaconda Cloud package.

Confirm that things are working as they should:

Output example:

Notice that all of your conda's hosted virtual environments are in the
/home/users/csteel/miniconda/envs/ directory.

Check your Ansible version:

Output example:

environment name == ansible-2.0.0.2

python version ==2.7

Anaconda cloud user kbroughton

Anaconda cloud package to install to environment == ansible

conda create --name ansible-2.0.0.2 python=2.7

source activate ansible-2.0.0.2

source deactivate ansible-2.0.0.2

conda install -c kbroughton ansible=2.0.0.2

which ansible

/home/users/csteel/miniconda/envs/ansible-2.0.0.2/bin/ansible

ansible --version

ansible 2.0.0.2

 config file = /etc/ansible/ansible.cfg

 configured module search path = Default w/o overrides

af://n172
af://n176

Removing environments

 You can delete any non-root Python environments you have created using the conda command like this:

... but you might want to check out the manual first eh?

Completely removing miniconda

If you accidentally destroy your Miniconda installation you can back up any environments in the envs
directory and then delete the ~/miniconda directory. Keep in mind that this will also delete any host
environments you left in the miniconda envs directory.

rm -rf ~/miniconda

rm -rf ~/.condarc ~/.conda ~/.continuum

remove PATH environment variable

edit ~/.bash_profile

rm -R /home/vagrant/Miniconda3/envs/data

af://n198
af://n204
af://n208

	miniconda-introduction.md
	References
	Description
	Benefits
	Keep in mind
	Requirements
	sudo access

	Options
	Install miniconda
	Is miniconda already installed?
	Target Workstation
	Download and verify
	Latest

	checksums
	Download
	Convert to text
	Compare

	Installation
	Add Miniconda3 to your path (~/.bashrc or ~/.profile)

	Confirmation
	Version check

	List current conda stuff
	Update conda

	IMPORTANT: Host vs. Client Virtual Environments
	Create and activate a virtual python environment
	output example from the first command:
	Activate the environment
	Notice your prompt

	Install some stuff

	Create another custom Python environment
	Which pythons are available
	List your current conda environments:
	output example:

	Anaconda cloud example
	Update your host environment
	Create a new virtual environment client
	Create our a new client environment called ansible-2.0.0.2:

	Activate the new environment
	Removing environments

	Completely removing miniconda
	remove PATH environment variable

